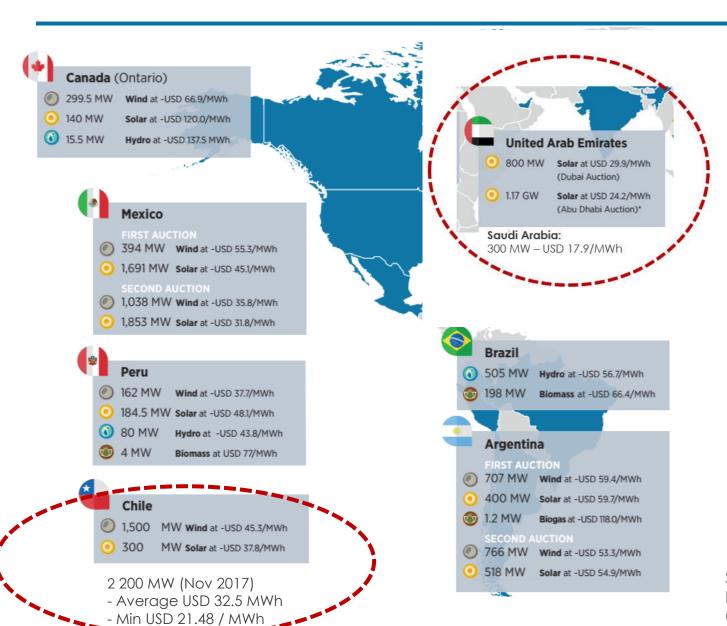
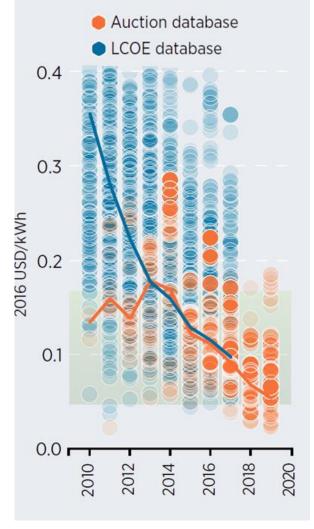

Boosting Solar PV Market – The role of Quality Infrastructure

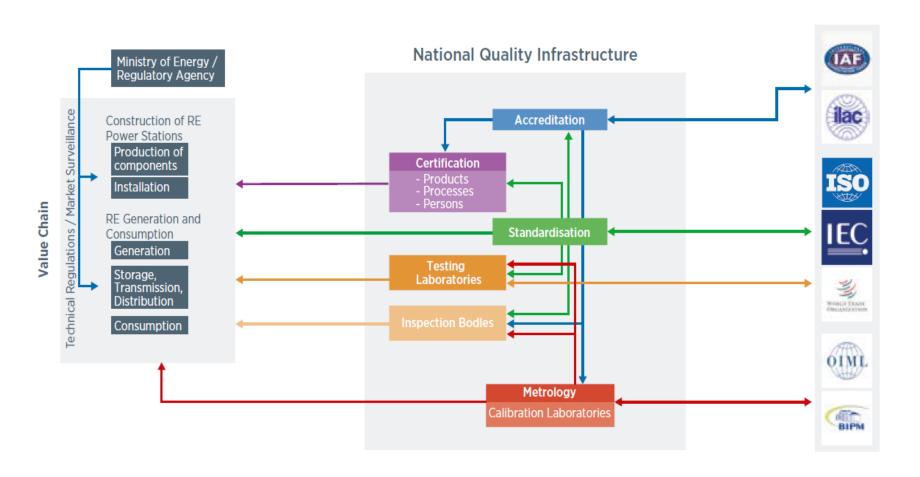
QUALITY AND SUSTAINABILITY OF PV SYSTEMS CONFERENCE
Brussels, Belgium
3 May 2018

Global solar power investments





Record PV auction prices – what will be delivered?



Sources: IRENA (2018), Renewable Power Generation Costs in 2017 CNE Chile

Quality Infrastructure to mitigate technical risk

Which **instruments** do we have to mitigate technical risk, attract investment and public acceptance, and meet expectations by all stakeholders in a USD trillion market?

Lenders' perspective: revenues only important during first 10-15 years

- Risk of infant failures are passed to EPC
- Bankability assessments further minimize risks of midlife failure
 - ✓ Valid renown certifications
 - ✓ Track record of company and modules
 - Quality of manufacturing facility
 - ✓ Warranty conditions

Holistic View - Quality Covers the Whole System, not Hardware only

Implementation of Quality Schemes covers not only equipment but whole systems
Including Design, Installation, O&M services

TÜV Rheinland

"Every other fault that we detect is due to incorrect installation."

Source: TÜV Rheinland

QI supporting policy-makers

- Support development goals
- Reliable photovoltaic systems
- PV integrated in power systems

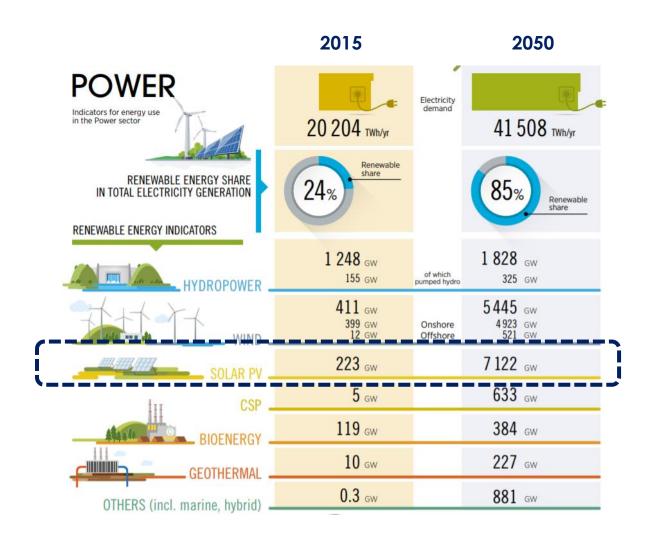
HOW QUALITY
INFRASTRUCTURE SUPPORTS
THE POLICY OBJECTIVES

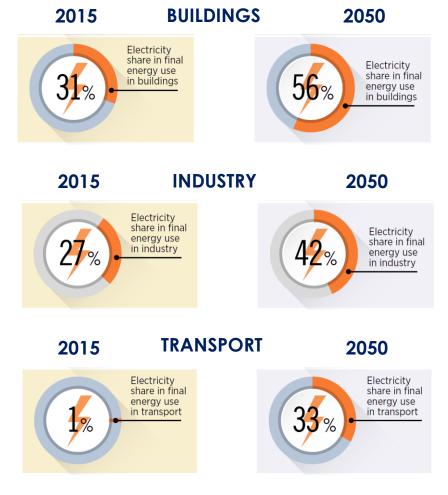
WHERE TO APPLY QUALITY INFRASTRUCTURE

- Attracts investment through risk mitigation
- Increases public acceptance
- Encourages efficient services
- Fosters good practices
- Promotes consumer protection

- White papers
- Guidelines
- Regulations
- Incentives
- Industry guidebooks
- Vocational training

The benefits of QI services outweigh their costs

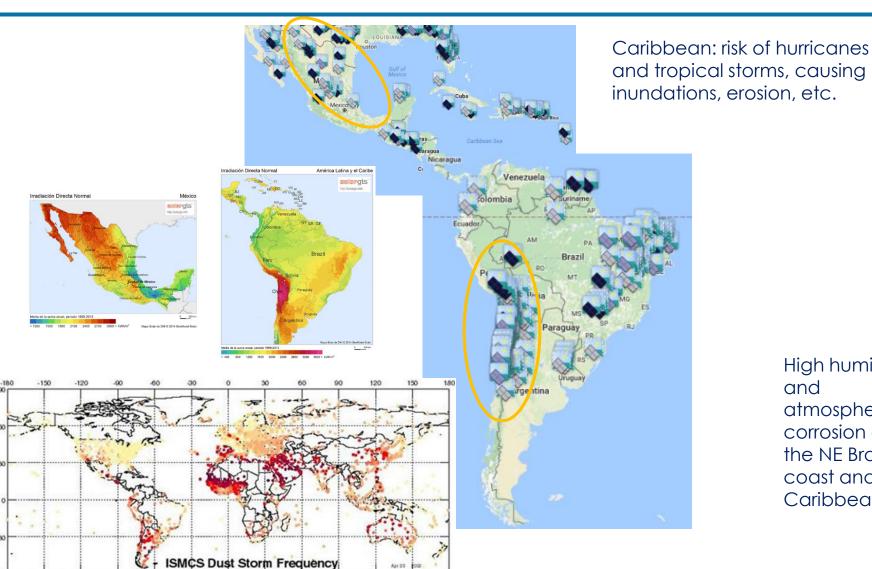

Quality infrastructure service	Cost	Benefit
Development: Solar resource and yield uncertainty		
Energy Production Assessment (EPA) based on measured irradiance data	Measuring local irradiance for at least one year	Reduction of uncertainty in EPA from 8% to 6% leads to an increase in P90 values by 3%. Rewarded through improved loan conditions.
Preconstruction: Prevention of low plant yields		
Batch acceptance testing for wholesale and utility projects	The cost of a batch acceptance test (Typically USD 50 000-55 350 for a 20 megawatt (MW) plant)	A reduction of the degradation rate from 0.75% a year to 0.4–0.6% a year in a project's financial model (Resulting in USD 450 000–1 000 000 of increased revenue over 25 years for a 20 MW plant)
Construction: Performance testing		
Includes independent testing in engineering, procurement and construction contracts on photovoltaic systems performance	The cost of batch testing for a 20 MW plant is USD 276.75- 553.50/MW	Photovoltaic module manufacturers deliver modules exceeding contracted performance by 2-3% when batch testing is announced. (Earning an additional EUR 4 000-6 000/MW a year increased generation for a 20 MW plant) (USD 4 428-6 642/MW/year)
Operation and maintenance		
Potential induced degradation (PID) reduction. Inspections to detect, classify and mitigate PID effects	Cost of inspection and corrective actions (for a 6 MW plant in Western Europe: EUR 2 5004 000/MW) (USD 2 767.5-4 428/MW)	Tackling PID reduces underperformance of 3–5%; however, recovery is not immediate (for the 6 MW plant, EUR 6 000–10 000/MW/year) (USD 6 642–11 070 MW/year)


Global electricity sector for the energy transformation

Share of electricity in TFEC needs to double between 2015 and 2050 with renewables generating 85%

Solar PV highest installed capacity: Global 7 000 GW by 2050 EU28 650 GW by 2050 (270 GW by 2030)

Weather conditions in LAC affecting PV systems

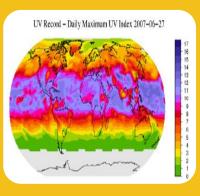

High irradiation level and temperature variations in Chilean Altiplano and northern México:

DNI up to 3800 / 3000 kWh/m²/year

UV-A/B up to 190 / 150 kWh/m²/year

Temperature variations: Up to 45° C

Frequent dust winds (soiling!) in Atacama and Sonoran Desert


High humidity and atmospheric corrosion on the NE Brazilian coast and the Caribbean

Weather conditions Middle East

http://www.eugcc-cleanergy.net/Solar_Photovoltaic_Testing_Centres_event

Temperature:
IEC open air
conditions (40oC - +40oC)
| GCC -20oC +55oC high
humidity

Annual
irradiance:
Germany ~1
200 kWh/m2 |
GCC ~2 300
kWh/m2 – UV
double

Hail: IEC 25mm Ø | GCC 44mm Ø Sand: no international test methods – different types of sand

International Standards addressing climatic conditions

Module classification:

- IEC 61215 (examples)
 - 60 kWh/m² irradiation
 - 15 kWh/m² UV-A/B
 - -40 to 85° C (200 cycles)
 - 1000h: 85° C / 85% hum.
 - 20h: 85° C / 85% hum.-> -40° C
 - 3 cycles of 2400 Pa
 - Ice balls with d=12,5 mm and v=35 mm/s to 27,2 m/s

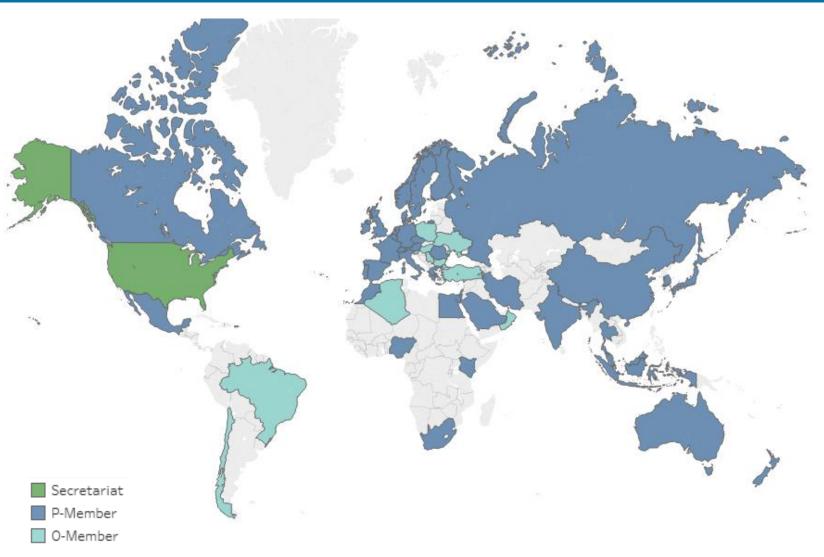
BOS classification:

- IEC 62093
 - Test similar to IEC 61215

Based on Solar World, 2016

Note: EPC = engineering, procurement and construction.

Specific tests:


- IEC 61701/62716 (salt/ammonia corrosion)
- IEC TS 62782 (mechanical load)
- IEC TS 62804 (PID)
- DIN 52348 (sand abrasion test)

Under development:

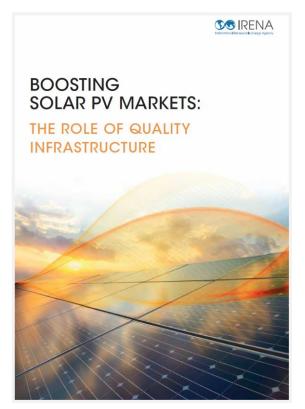
• IEC 62892: Additional tests to reflect different climates and applications (thermal stress, UV, high humidity); expected in 2018

Europe's engagement in international standardization IEC TC82

-Limited engagement from emerging markets

- -Need for engagement in relevant international platforms
- IEC / IECRE
- PVQAT
- IEA PVPS (T13, T12)
- IRENA
- Others
- -Work together
- Industry (SolarPower Europe SolarBankability, SolarUnited)
- R&D institutes
- Financial institutions
- Commercial banks
- Insurance companies
- Policy-makers and regulators
- Communities and final consumers

Take away messages



- We entered into an era of low equipment cost and higher pressure on marginal profits | quality infrastructure is critical to mitigate risks and achieve the expected LCOE
- ❖ Cost benefit ratio of assuring quality is positive
- Quality is not about hardware only, but a system approach is needed
- Progress on standards and conformity assessment schemes need to accelerate the pace to meet the existing and NEW markets needs
- ❖ Need to engage emerging markets and work closer with project developers and R&D bodies to adapt technology and technical requirements
- ❖ International and regional cooperation networks strengthen and accelerate the development and implementation of QI for PV systems. Leverage on existing initiatives
- QI supports effectiveness of policies for PV markets all white papers should include the role of QI

http://Inspire.irena.org

Download for free: www.irena.org/publications

Thank you

Contact:
Francisco Boshell (<u>Fboshell@irena.org</u>)
Alessandra Salgado (<u>Asalgado@irena.org</u>)

