

From Space to Earth:

CPV – Concentrator Photovoltaics

Dr. Gerhard Strobl

© AZUR SPACE Solar Power GmbH

released for publication (level 1 of 5)

Table of Contents

Company

□Solar Cells for Space

Terrestrial Concentrator Photovoltaics (CPV)

Conclusion

History

Company

for 49 years solar cells from Heilbronn

DASA ASE RWE

Revenue of 40m€ (2012) with 200 people

Owned by Generali Group (IT)

40% world market share of civil space satellite market

Only European manufacturer of triple GaAs solar cells

© AZUR SPACE Solar Power GmbH

www.azurspace.com

3

AZUR SPACE Technical Milestones

1st generation Silicium Photovoltaik – mono and multi crystaline	1964	First silicon space solar cell 8 % AMO	
	1974	First multi-crystalline Si–solar cell (10 cm x 10 cm, 10% AM 1.5) for terrestrial application	
	1983	First fully automated terrestrial production line in screen printing technology	
	1986	High efficiency Si solar cell (18% AMO, 20% AM 1.5) in production	
3rd generation III-V semiconductor Photovoltaik	2001	First European triple junction GaAs space solar cell (25% AMO)	
	2008	First TJ-GaAs triple junction GaAs space solar cell with 30% efficiency	
	2009	First terrestrial CPV TJ-GaAs solar cell with 41% efficiency (cooperation with Fraunhofer Institut für Solare Energiesysteme, Freiburg)	
	2011	CPV wafer with 40.3% average efficiency and 41.5% max. efficiency in production	
	2012	CPV development wafer with 42.3% average and 43.3% max. efficiency	
	2012	Best EOL GaAs space solar cell on the market	
© AZUR SP	ACE Solar	Power GmbH released for publication (level 1 of 5) www.azurspace.con	

©

Solar Cells for Space

© AZUR SPACE Solar Power GmbH

released for publication (level 1 of 5)

5

3G30C Triple Space Solar Cell

- Solar cells with 4×8 , 8×8 , 6×12 cm² cell size
- Ultra-thin cells
- Solar cell assemblies with bypass diode

Cell type	3G30 (AZUR SPACE)	Competitor A	Competitor B
Begin-of-life efficiency ¹	29,8 %	29,5%	29,5%
End-of-life efficiency after 15 years in GEO orbit ^{1,2}	28,1% ³	26,6%	26,6%

¹ - at 1353 W/m², 28 ° C

² - equivalent to 5E14 1 MeV e⁻/cm² fluence

^{3 –} AZUR patent pending

© AZUR SPACE Solar Power GmbH

Terrestrial Concentrator Photovoltaics (CPV)

Si and GaAs Solar Cells

Solar Cell Processes

Epitaxy Reactors

Dicing Processes

© AZUR SPACE Solar Power GmbH

Photolithographie Processes

Chemical Processes

released for publication (level 1 of 5)

Evaporation Processes

10

Principle of Concentrating PV (CPV)

Substitution of expensive semiconductor material by cheap optics

50% cell efficiency until year 2020

Efficiency is the key driver for cost reduction

© AZUR SPACE Solar Power GmbH

released for publication (level 1 of 5)

11

Examples CPV Power Plants in Europe

Seville
(Spain)

Location	Size	in operation since
Seville, Spain	100kWp	2008
Puertollano, Spain	500kWp	2008
Altomonte, Italy	6 kWp	2008
Bernin, France	6 kWp	2010
AbuDhabi, Emirates	100 kWp	2010
Sede Boqer, Israel	6 kWp	2010
El Natrun (near Cairo), Egypt	30 kWp	2010

Puertollano (Spain)

© AZUR SPACE Solar Power GmbH

released for publication (level 1 of 5)

12

CHP Combined Heat and Power Systems

32m² parabolic dishes: 7.5 kW_{elect} + 17.4 kW_{therm}.

© AZUR SPACE Solar Power GmbH

released for publication (level 1 of 5)

13

CPV solar cells and subsystems for all over the world

CPV solar cells on wafer or bare cells, 38% to 42% efficiency, depending on design and measurement condition

CPV solar cells on ceramic board (EFA* – Enhanced Fresnel Assembly)

CPV solar cells on water cooling unit (ADAM* – Advanced Dense Array Module)

*) Registered trademark of AZUR

© AZUR SPACE Solar Power GmbH

14

energy output vs. daytime

Optimal CPV condition: high DNI regions

100°E 120°E 140°E 50'N 10:00 30°N 30°N **Direct Normal Irradiation** 10°N 10°N averaged annual sum 800 kWh/m²/v 801 - 1000 10°5 10°S 001 - 1200 1201 - 1400 1401 - 1600 30°S 1601 - 1800 1801 - 2000 2001 - 2200 2201 - 2400 2401 - 2600 50°S 50°S 2601 - 2800 >2800 kWh/m² 100°E 140°W 100°W 80°W 60°W 40°W 20°W 20°E 40°E 60°E 80°E 120°E 140°E 160°E 180 Data based on SSE 6.0 dataset for a 22-year period (July 1983 - June 2005) (http://eosweb.larc.nasa.gov/sse/)

Advantages for economically weak but sunny regions in south of Europe, MENA states etc.

© AZUR SPACE Solar Power GmbH

released for publication (level 1 of 5)

15

CPV - Consistent Energy Production

Peak demand period **CPV** matches very well with peak demand in sunny regions 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 Silicon fix — CPV tracked — Power Demand Notes: power curve of Californian grid 6 Aug 2008, production curves in Seville 1 May 2008 16 Sources: California Independent System Operator, Concentrix Solar, Abengoa Solar © AZUR SPACE Solar Power GmbH released for publication (level 1 of 5) www.azurspace.com

Solar Cell Efficiency and Cost Leverage Factor are Key

¹ LCOE = levelized cost of energy

Cell costs are 15 -20% of overall CPV system's cost

Cell efficiency and cell cost have a leverage effect of factor 5-7 on overall CPV system cost

© AZUR SPACE Solar Power GmbH

CONFIDENTIAL (level 3 of 5)

17

CPV Consortium Study

AZUR Solar Cell Technology Roadmap (500x, AM1.5d, 25° C)

Cell ⁻	Гуре	Average Efficiency (500x)	Availability
3C	40	40 %	since 2010
3C4	42	42 %	2013
4C	44	44 %	2014
4C	45	45 %	2015

© AZUR SPACE Solar Power GmbH

Conclusion

© AZUR SPACE Solar Power GmbH

released for publication (level 1 of 5)

21

Conclusion for Competitive CPV

- **Demo CPV solar power plants**
- Industrialisation ("Death Valley") with competitive implementation of whole industrial value chain in Europe
- Further R&D (cell and system improvements, cost reduction)
- □ AZUR 2013: 90 MW CPV solar cells (η=42%) AC electricity cost 10 €ct / kWh
 - 2020: 3000 MW CPV solar cells (η=50%) AC electricity cost 5 €ct / kWh

released for publication (level 1 of 5)

Thank you very much for your kind attention!

© AZUR SPACE Solar Power GmbH

released for publication (level 1 of 5)

23