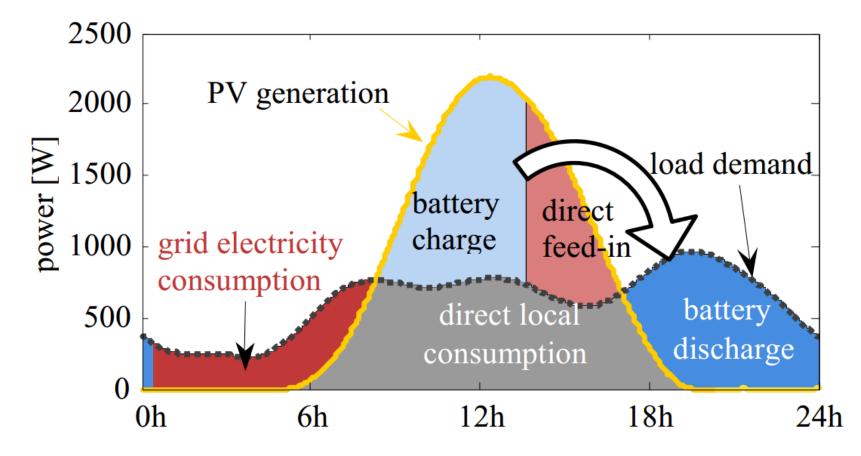


Impact of storage on PV attractiveness

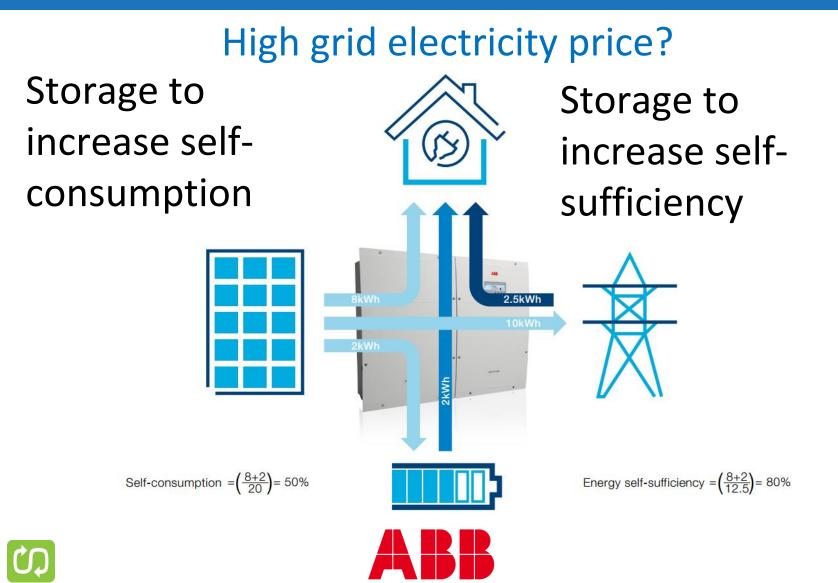
Mariska de Wild-Scholten

Repowering Europe, 'Photovoltaics: centre-stage in the power system', 18 May 2016, Brussels


How does storage affect the environmental balance of PV?

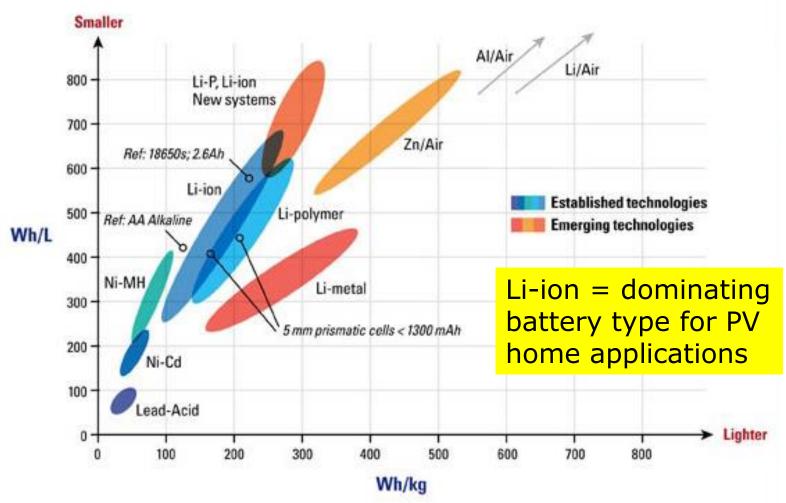
Life Cycle Assessment

- Greenhouse gas emissions
- Toxicity
- Depletion


Mismatch of generation & consumption of electricity

Martin Braun 2009 EPVSEC24 4BO.11.2

Why storage @ home?



Storage System

- Module with battery cells this presentation
- Energy management system
- Inverter
- Etcetera

Which battery type?

Battery technology comparison

TECHNOLOGY COMPARISON

	AHI™	Li-ion	PbA
System Life			$\overline{}$
Maintenance			$\overline{\mathbf{\Theta}}$
Partial State of Change			0
Temperature Tolerance		Θ	0
Safety		Θ	$\overline{}$
Sustainability		Θ	0
Energy Density	\bigcirc		$\overline{}$
Power Delivery	$\overline{}$		
Installed System Price		$\overline{\mathbf{\Theta}}$	
•••••		•••••	

Li-ion = dominating battery type for PV home applications

Calculation of carbon footprint of stored electricity in life time of battery

Global Warming Potential (GWP) of stored electricity g CO₂-eq/kWh

GWP (g CO₂-eq) / kg batterystep 1

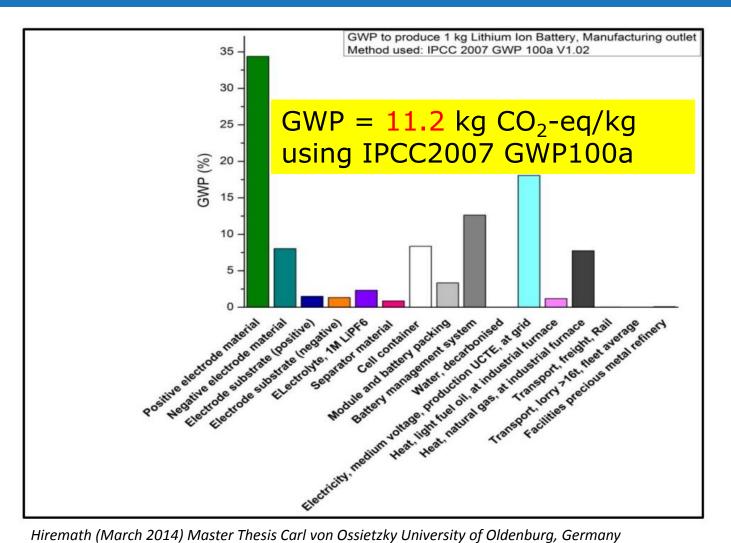
x Battery weight (kg)
/ usable capacity of battery (kWh)step 2

/ number of charge cyclesstep 3

Global Warming Potential (GWP) of battery with LMO: Lithium Manganese Oxide (LiMn₂O₄)

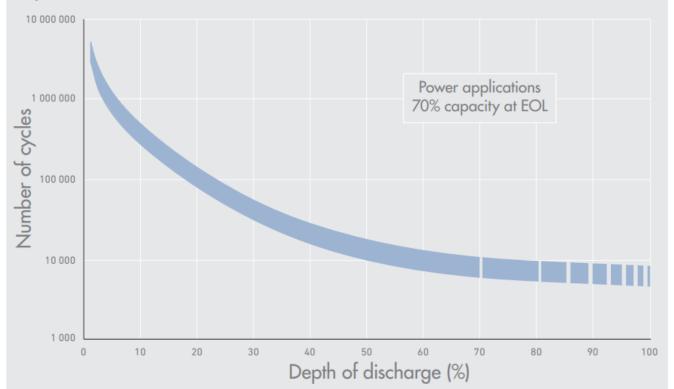
$GWP = 5.89 \text{ kg } CO_2 \text{-eq/kg battery cell}$ using IPCC2007 GWP100a

Battery, Lilo, rechargeable, prismatic, at plant/GLO U	IPCC2013 GWP100a	
	kg CO2-eq/kg	
Total:	5.891	100.00%
Direct emissions	0.00E+00	0.00%
Transport, transoceanic freight ship/OCE U	8.40E-02	1.43%
Transport, lorry >16t, fleet average/RER U	1.37E-01	2.32%
Metal working factory/RER/IU	4.73E-02	0.80%
Electricity, low voltage, production UCTE, at grid/UCTE U	6.44E-02	1.09%
Single cell, lithium-ion battery, lithium manganese oxide/graphite, at plant/CN U	4.31E+00	73.15%
Printed wiring board, surface mounted, unspec., solder mix, at plant/GLO U	8.57E-01	14.54%
Cable, three-conductor cable, at plant/GLO U	6.24E-02	1.06%
Cable, data cable in infrastructure, at plant/GLO U	6.43E-02	1.09%
Reinforcing steel, at plant/RER U	2.14E-01	3.63%
Sheet rolling, steel/RER U	5.25E-02	0.89%


Global Warming Potential (GWP) of battery with LMO: Lithium Manganese Oxide (LiMn2O4)

GWP = 5.39 kg CO₂-eq/kg battery using IPCC2007 GWP100a

		Single cell, lithium-ion battery, lithium manganese oxide/graphite, at plant/CN U					
			Unit	Value	%	IPCC2013 GWP100a	%
						kg CO2-eq/kg	
				1.050	100.0%	5.390	100.0%
		Transport, freight, rail/RER U	tkm	0.167		6.63E-03	0.1%
		Transport, lorry >16t, fleet average/RER U	tkm	0.028		3.73E-03	0.1%
		Chemical plant, organics/RER/I U	р	0.000		4.97E-02	0.9%
		Electricity, medium voltage, at grid/CN U	kWh	0.106		1.28E-01	2.4%
		Heat, natural gas, at industrial furnace >100kW/RER U	MJ	0.065		4.73E-03	0.1%
Inert atmosphere:		Nitrogen, liquid, at plant/RER U	kg	0.010		4.37E-03	0.1%
Electrolyte salt:	LiPF6	Lithium hexafluorophosphate, at plant/CN U	kg	0.019	1.8%	4.75E-01	8.8%
Electrolyte solvent:	Ethylene carbonate	Ethylene carbonate, at plant/CN U	kg	0.160	15.2%	2.35E-01	4.4%
Separator:	Coated polyethylene film	Separator, lithium-ion battery, at plant/CN U	kg	0.054	5.1%	3.23E-01	6.0%
Cathode:	LiMn2O4	Cathode, lithium-ion battery, lithium manganese oxide, at plant/CN	kg	0.327	31.1%	2.68E+00	49.7%
Anode:	Graphite	Anode, lithium-ion battery, graphite, at plant/CN U	kg	0.401	38.2%	1.04E+00	19.3%
Electrode tab:	Al	Aluminium, production mix, wrought alloy, at plant/RER U	kg	0.016	1.6%	1.80E-01	3.3%
Package: Pol	Polyethylene	Polyethylene, LDPE, granulate, at plant/RER U	kg	0.073	7.0%	1.60E-01	3.0%
		Processing:					
Processing of input materials:		Extrusion, plastic film/RER U	kg	0.073		3.87E-02	0.7%
		Sheet rolling, aluminium/RER U	kg	0.016		1.00E-02	0.2%
		Emissions to air:					
		Heat, waste	MJ	0.380			
		Waste to treatment:					
Ecoinvent assumptio	n 5%	Disposal, Li-ions batteries, mixed technology/GLO U	kg	0.053		4.91E-02	0.9%


Global Warming Potential (GWP) of battery with LFP: Lithium Iron Phosphate (LiFePO₄)

C

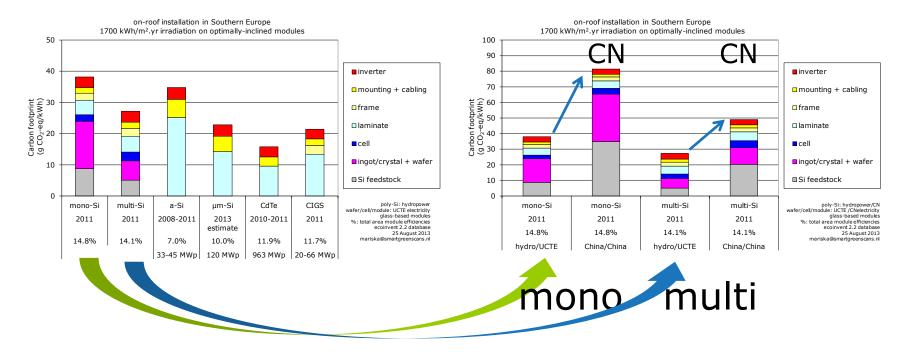
Number of cycles depend on depth of discharge

Energy storage module Cycle life at + 25°C/+ 77°F

Cycle life depends on both depth of discharge (DOD) and charging rates. The above results are based on testing at a fixed DOD and varying charging rates. The end of life (EOL) is reached when the remaining capacity is 70% of the initial capacity.

Carbon footprint of stored electricity

Lowest value from my preliminary analysis: 12 g CO₂-eq/kWh stored electricity


How much kWh storage needed / kWh generated?

Carbon footprint - gram CO₂-eq/kWh

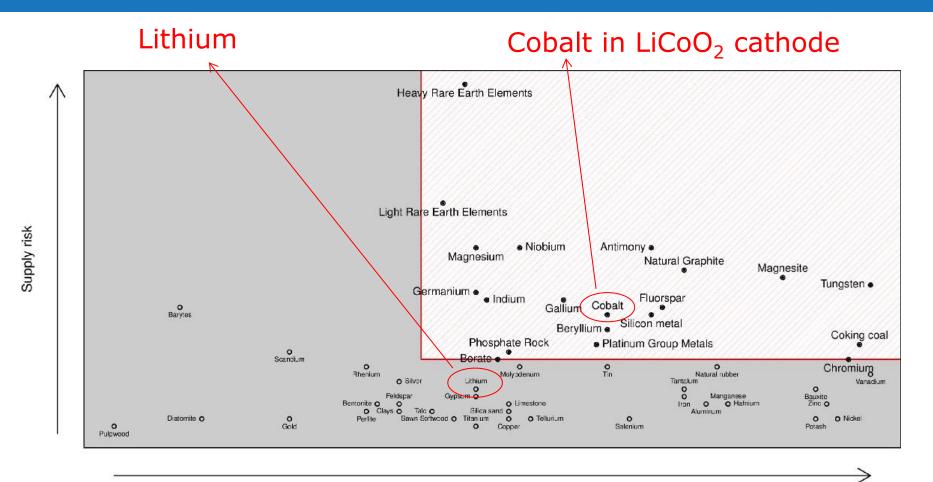
⁽⁸⁾ Status of inventory data 2011

hydropower / UCTE China electricity mix

World average carbon footprint $\approx 55 \text{ g CO}_2$ -eq/kWh

Many uncertainties

- GWP value based on 2010 or older inventory data of the battery
- Reliable manufacturer data missing
- Number of charging cycles depend on depth of discharge
- Only battery calculated, not a complete storage system
- How much storage is needed / kWh electricity generated from PV?



Toxicity

- N-methyl-2-pyrrolidone (NMP) solvent in electrolyte
 - Alternative: Water based is not possible because some electrodes are moisture sensitive
 - Alternative: Electrovaya SuperPolymer[®] 2.0
- Polyvinylidene fluoride-based binders in electrolyte
 - Replace with chlorine

Critical Raw Materials: cobalt

Economic importance

Depletion of materials

Cobalt in LiCoO₂ electrode

- replace Co with Mn, Fe, Ti
 - LiFePO₄
 - Lithium Titanate (Li₄Ti₅O₁₂)

Lithium

- replacement with Na, Ka, Mg, Ca...
- recycling

Cradle to cradle battery Aquion Energy

Recommendations

To get a reliable evaluation of the environmental impact of current storage systems it is recommended that LCA studies are performed

- with data collected by manufacturers of Battery Storage Systems,
- in EU / National projects.

References / Funding

References:

- D. Larcher, J-M. Tarascon (2014) Towards greener and more sustainable batteries for electrical energy storage, Nature Chemistry 7: 19-29
- PV Magazine Storage Special July 2015 with Market Survey of Batteries

Funding: none

Thank you for your attention!

mariska@smartgreenscans.nl

THE PARTY BUT THE PARTY OF

La Duna, Casas Bioclimáticas ITER, Tenerife