

PV System Performance and Reliability - Quo Vadis?

Mitigating risks of premature solar panel failure in the field

September 17th, 2015 – EU PVSEC

Dr. Lucie Garreau-iles

EMEA Technical Manager, DuPont Photovoltaic Solutions

DuPont: the Leading Material Supplier in PV

Solamet[®] Metallization Pastes

Tedlar[®] PVF Films for Backsheet

Elvax[®] and lonomer Encapsulants

Driving higher energy conversion efficiency

Protecting PV

Delivering long term protection of cells

+ IIO Ver the last 7 years, DuPont has introduced more than 110 new Solamet[®] pastes designed to boost solar panel power output. + 500[%] More than half of the world's 700 million solar panels installed since 1975 have DuPont materials in them.

© DuPont 2015. All rights reserved

Industry Standards not Reflecting Long-term Performance

IEC testing protocols do not adequately simulate the performance in the environment

Qualification Tests

- 1 to 2 stresses in series
- 15 kWh per m2 of UV radiation (front) no irradiation on the back
- 200 thermal cycles
- No solar load (not in operation) in testing chambers

25 Years In-Field

- Multiple environmental and mechanical stresses
- 171 kWh per m2 rear side of UV radiation (temperate) *
- 1000s of thermal cycles
- Higher operating temperature
- Stresses endured with solar load (in operation)

"Long-term outdoor exposure is the ultimate test for all module components, material quality and manufacturing quality."*

* Artur Skoczek, Tony Sample, and Ewan D. Dunlop, The Results of Performance Measurements of Field-aged Crystalline Silicon Photovoltaic Modules, Wiley InterScience, 2008

Independent Testing Validates Performance Advantage of Tedlar[®]PVF: Long Module Life, with Low & Tightly Distributed Power Loss

PV Module Power Loss After Years of Outdoor Operation

Tedlar[®] is the only backsheet material proven to deliver superior outdoor PV performance for decades

Source: * Joint Research Centre (Italy)

** AIST (Japan)

DuPont[™] Tedlar[®] PVF Film-Based Backsheet Demonstrates Outstanding Reliability

Note: All percentage numbers are based on MW

* PVF (Polyvinyl Fluoride), PVDF (Polyvinylidene Fluoride)

PET (Polyethylene Terephthalate), FEVE (Fluorinated Ethylene Vinyl Ether)

Fielded Module Program Summary

- Surveyed: >60 global solar installations in NA, EU & AP
- 45 module manufacturers, > 150 MW, > 700,000 modules
- Range of Exposure: Newly commissioned modules to 30 years in the service environment

Backsheet Based:	Tedlar®	PVDF	PET	FEVE
Profile of Sample Size	30 Installations 20 MW 122K Modules	24 Installations 104 MW 403K Modules	15 Installations 23 MW 112K Modules	4 Installations 21 MW 102K Modules
Avg System Age Avg Range	10.5 years 2 - 27 years	3.2 years 2 - 5 years	6.5 years 2 - 15 years	3.75 years 3 - 5 years
Fields with Identified Defects	3/30 (10%)	12/24 (50%)	11/15 (73%)	2/4 (50%)
Percentage Defects on MW Basis	0.1% (15kW / 20MW)	43% (44/104 MW)	39% (9/23 MW)	29% (6/21 MW)
Types of Defects Observed	Delamination Cracking* * Only in 4 mil single layer	Frontside Yellowing Cracking	Frontside or Backside Yellowing Delamination / Cracking	Backside Yellowing Delamination / Cracking

Two very different outcomes

6 Years Later:

"Faulty solar panels pulled from 24 schools"*

Stated Expectations (2006, 2007; PPA):

- "Wanted on-site generation at predictable rates but we didn't want any upfront costs."
- "Expected to provide the lion's share of our peak power needs"

Results – after 6 years:

- Defect discovered that created potential safety hazard
- SDCS lost future savings from the PV (now purchasing power from the grid)

*Source: San Diego Union Tribune: Sept 13, 2012

28 Years Later: "SMUD forges a new path in Photovoltaics Generation "*

Stated Objectives

- "PV is an excellent match for our generating needs"
- "The Utility specified the type and level of quality assurance it would expect"
- "We laid down the basic criteria for the design and manufacture of the PV modules"

Results - 28 Years with Tedlar® PVF Backsheet

- First large scale (1 MW) utility PV generation facility in the world
- Expected power provided for 28 years

*Source: Electric Light & Power, August 1984

Minimal Cost Difference Between Tedlar[®] PVF Film-Based Backsheet and "Non-Proven" Backsheets

Cost difference between Tedlar[®] PVF film-based backsheet and specialty PET-based backsheet

Days of operation needed to cover the cost difference

\$0.003~0.015/W*

Only 5~25 days** operation out of entire lifetime

* Difference derived from TPT (Tedlar®/Polyester/Tedlar® backsheet) and TPE
*** DuPont calculation based on following assumptions
*** Financial calculation varies by location
Location: California, U.S.
Panel output: 270W
Efficiency rate: 18%
Performance ratio: 78%
Source of electricity price data: U.S. EIA

Copyright © 2015 DuPont or its affiliates. All rights reserved. The DuPont Oval Logo, DuPont[™], The miracles of science[™] and all products denoted with [™] or ® are registered trademarks or trademarks of E. I. du Pont de Nemours and Company or its affiliates.

