Products and system design for making PV a natural component of the building envelope

<u>P.-J. Alet</u>, J. Escarré, G. Cattaneo, H.-Y. Li, P. Heinstein, L. Sansonnens, S. Nicolay, J. Bailat, V. Musolino, C. Ballif, L.-E. Perret

Hamburg, 15.09.2015

World first white PV modules, by CSEM

PV in built areas

Buildings: the untapped potential

PV in built areas

Integration challenges

Visual integration

Trade-offs

Visual integration

IR filter technology

Enabler: high IR response of modern cells • Benefits:

High stability of colour under changing viewing angle

PV modules as construction element

Demonstration house in BRE (UK) inaugurated 11th Sept. 2015

- CSEM: PV technology
- ÜserHuus: product development
- NexPower: PV module manufacturer
- Spanwall: façade element supplier
- Solmatix: installer

CSem

Electrical integration challenges

- PV system design, wiring
 - Complex shapes and shading patterns
 - Lack of suitable standards for DC wiring in buildings
- Alignment between local consumption and production
 - For the user: energy autonomy
 - For the network: maintains quality of supply

Electrical integration

Simplification of wiring and design

- Cornerstone: distributed power conversion
- Competing approaches: AC and DC

- Accessible to any electrician
- Scalable: all conversion functions in micro-inverters
- Low efficiency
- High device cost

Electrical integration

General architecture of DC microgrid

Gain in efficiency with DC: 5% to 8% vs. AC¹

¹D. Fregosi, S. Ravula, D. Brhlik, J. Saussele, S. Frank, E. Bonnema, J. Scheib, and E. Wilson, "A comparative study of DC and AC microgrids in commercial buildings across different climates and operating profiles," in *2015 IEEE First International Conference on DC Microgrids (ICDCM)*, 2015, pp. 159–164.

Alignment between local consumption and production

Storage

•••

- Storage can increase self-consumption fraction by ca. 20 pc
- Does not remove demand peaks

Self-consumption by design

- Better static matching between generation and load: new criterion for system optimisation
- Daily profile: azimuth angles
- Annual profile: tilt angles e.g., roof vs. façade
- Technology choice
- Safest option for customer

	PV generation % annual		Self-consumable
Technology	energy consumption		fraction
	Peak hours	Total	
Thin-film silicon	83%	63%	95%
Standard	216%	165%	36%
crystalline silicon			
High-performance	232%	177%	31%
crystalline silicon			

Match between generation and consumption for school building

- Large BIPV potential to be tapped by making PV a natural component of the building envelope
- Products & design to solve some integration challenges
 - Visual: many technical options, difficult trade-offs
 - Structural: technical solutions demonstrated, require strong collaboration
 - Electrical: AC and DC options, storage, design for self-consumption; much left to do
- Business integration challenge to be solved on its own.

Thank you for your attention!

Pierre-Jean.ALET@csem.ch

info@csem.ch

