PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Quality and sustainability as an asset for European Industry, Brussels 3rd May 2018

Statistics of Photovoltaic Module Failure

M. Köntges¹, A. Morlier¹, U. Jahn², K. A. Berger³ ¹Institut für Solarenergieforschung Hamelin ²TÜV Rheinland Energy GmbH ³Austrian Institute of Technology GmbH

Power [%] Name plate integrated Wear-out-failure **EVA** discoloring LID 0.5-5% Delamination, cracked cell isolation Glass AR deg. $P_{nominal}$ · < 3% · < 10% PID **Diode failure** Corrosion of Cell interconnect breakage cell&interconnect Contact failure j-box/ string interconnect Glass breakage Loose frame Time [years] Infant-failure **Midlife-failure** 25 Activity 3.4 in IEA TASK13

PVPS

PVPS

Degradation Rates of PV Modules/Systems¹

- x-Si mean degradation in the 0.8–0.9%/a range
- HIT and microcrystalline silicon ~ 1%/a
- Thin-film > 1.4%/a, strong variations depending on technology

- Degradation rate: no clear climatic zone dependence²
- ¹D. C. Jordan et al., Prog. Photovolt. Res. Appl., 2016, DOI:10.1002/pip.2744.
- ²D. C. Jordan et al., Prog. Photovolt. Res. Appl., 2017, DOI: 10.1002/pip.2866.

Structure of the Survey¹

New form Copy f	orm Dele	ete form		·	Survey version	08 February 2016
PV system basics				<u>Goal of this survey</u>	How to start ?	Other questions
System ID:		Example ID	PV module typ	be		Multicrystalline S
Source of data		Expert	Inverter type			String inverter wi
Country		Germany	Mounting system type			Rail system at lo
Climate zone		Moderate (C-climate)	Grounding of substructure & module frames/conductor			Grounded/non
Special stress			Other system component			
Kind of system		Roof top commercial	Nominal system power [kWp]		[kWp]	100
Orientation		0 (south)	Date of system start [MM/		[MM/YYYY]	Juni 13
Inclination		30	Date of failure documented here		[MM/YYYY]	Juni 15
Comment if a field is orange			•			
Integral data	Following fail	ure specifications are based Cable and interconnector	on investigate PV module	d percentage of Mounting	Other	Comment
2	[70]	[70]	50	[70]	[70]	
Failure specification for	25 Failure 1	% of the system	Failure 2	Power loss 2	Safety failure 1	Safety failure 2
r allou system part	specification	[%]	specification	[%]		
Inverter	No failure	No detectable loss	No failure	No detectable loss	No failure	No failure
Cable and interconnector	No failure	No detectable loss	No failure	No detectable loss	No failure	No failure
PV module	Cell cracks	13%-10%1	No failure	No detectable loss	No failure	No failure
Mounting	No failure	No detectable loss	No failure	No detectable loss	No failure	No failure
Other system component	No failure	No detectable loss	No failure	No detectable loss	No failure	No failure
Comment if a field is orange		10 000000000000000000000000000000000000		110 400014010 1033	rio fallaro	
oominion n a noid io orange						

5 x

¹http://iea-pvps.org/index.php?id=344

Selected PV Module Failure Examples

Cell cracks

Discolouration of laminate

Defect bypass diode

Delamination

Disconnected cell or string interconnect ribbon

But also information on soiling, snow load, storm ...

0

62%

Multi-Si

🖬 a-Si

CdTe

Unknown

🖬 Mono-Si

CIGS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Database Composition

- Moderate climate dominates data
- Technology distribution equal to market distribution
- 144 failure-survey-data sets from 18 countries

PVP

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Analysis of Failure Occurrence

- Count only failures leading to power loss
- Cell cracks in 1-2 year, PIDs in 3-4 year

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Analysis of Failure Occurrence

- Defect bypass diodes, in the first years but also later
- Discolouring all years, but accumulate after 18 years

PVP

Degradation Rates – Impact on Affected PV Modules

• Degradation rate of PV modules affected by failure *x* of system *i*:

$$d_{i,x} = \frac{\Delta P_{i,x}}{\tau_{b,i} - \tau_{a,i}}$$

Degradation Rates – Impact on Investigated Part of PV System

• Degradation rate of the investigated system part:

$$\delta_{i,x} = d_{i,x} \frac{z_{i,x}}{y_i}$$

- Degradation not necessarily linear
- But method allows comparing power loss for different system ages

Power of whole system:

 P_i in kW_p

From failure x affected system part: $z_{i,x}$ of system i $\rightarrow d_{i,x}$

For failure x investigated part: y_i of system i $\rightarrow \delta_{i,x}$

Degradation Rates (DR) for Affected PV System Part

Degradation Rates for Investigated PV System Part

- Most DR are reduced on system level, because not all modules are affected!
- DR of PIDS (8%/a), PID-corrosion (12%/a) and defect bypass diode (10%/a) are reduced on system level
- DR of cell cracks is substantially reduced (2%/a),
- Discolouring DR does not change, mostly all modules in a system are equally affected (0.4%/a)

PVPS

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME

Degradation Rates of Failure Affected Part of PV System

- Cell crack degradation rate highest (8%/a) in continental climate
- Mean PID 16%/a for temperate climate but high variations in rates
- Discolouring highest in tropical climate but mean <1%/a

PVP

LID for PERC modules not in statistic

- P-type multi crystalline PERC cells susceptible for Light and enhanced Temperature Induced Degradation (LeTID) 1.5%-15% degradation in 1-5 years (V_{mpp}), propritär solutions¹
- P-type mono crystalline PERC cells susceptible for B-O degradation
 1% 10% degradation multiple days (V(-))

1% - 10% degradation multiple days (V_{mpp}), industrial solutions available

[1] F. Kersten et al., 31st EUPVSEC, Hamburg, Germany (2015), p. 1830

Conclusions

- Cell cracks dominate the early failures during year 1 and 2.
- Degradation rate caused by cell cracks is highest (8%/a) in continental and snow climates.
- PIDs dominates year 3 and 4 in the failure statistic (16%/a) in moderate climate.
- Great variation of degradation rates for bypass diode failure, may cause dramatic power loss.
- In all climates mean degradation rate of discolouring is below 1%/a.
- Be aware of LID degradation

Outlook

- Assessment of PV Module Failures in the Field http://www.iea-pvps.org/index.php?id=435
- Support us to collect anonymous data http://iea-pvps.org/index.php?id=344
- Send to: m.koentges@isfh.de
- TASK13 extension start in September 2018

IEA INTERNATIONAL ENERGY AGENCY

Supported by:

N N Federal Ministry for Economic Affairs and Energy

Thanks for financial support:

State of Lower Saxony and BMWi under contract no. 0325786A&C and the Austrian Climate and Energy Fund under contract no. 850.414 on behalf of the Austrian Ministry for Transport, Innovation and Technology.

Thanks to Arnaud Morlier and Iris Kunze for supporting data collection.

