Quality and sustainability as an asset for European Industry, Brussels 3rd May 2018

Statistics of Photovoltaic Module Failure
M. Köntges¹, A. Morlier¹, U. Jahn², K. A. Berger³
¹Institut für Solarenergieforschung Hamelin
²TÜV Rheinland Energy GmbH
³Austrian Institute of Technology GmbH

Activity 3.4 in IEA TASK13
Degradation Rates of PV Modules/Systems¹

- x-Si mean degradation in the 0.8–0.9%/a range
- HIT and microcrystalline silicon ≈ 1%/a
- Thin-film > 1.4%/a, strong variations depending on technology

![Graph showing degradation rates by climate zone]

- Based on 11029 data points
- Degradation rate: no clear climatic zone dependence²

Structure of the Survey

PV system basics

<table>
<thead>
<tr>
<th>System ID:</th>
<th>Example ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of data:</td>
<td>Expert</td>
</tr>
<tr>
<td>Country:</td>
<td>Germany</td>
</tr>
<tr>
<td>Climate zone:</td>
<td>Moderate (C-climate)</td>
</tr>
<tr>
<td>Special stress:</td>
<td>Roof top commercial</td>
</tr>
<tr>
<td>Kind of system:</td>
<td>0 (south)</td>
</tr>
<tr>
<td>Orientation:</td>
<td>30</td>
</tr>
</tbody>
</table>

Integral data

<table>
<thead>
<tr>
<th>Total system power loss [%]</th>
<th>Inverter [%]</th>
<th>Cable and interconnector [%]</th>
<th>PV module [%]</th>
<th>Mounting [%]</th>
<th>Other [%]</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Failure specification for 25% of the system

<table>
<thead>
<tr>
<th>Failed system part</th>
<th>Failure 1 specification [%]</th>
<th>Power loss 1</th>
<th>Failure 2 specification [%]</th>
<th>Power loss 2</th>
<th>Safety failure 1</th>
<th>Safety failure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter</td>
<td>No failure</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No failure</td>
</tr>
<tr>
<td>Cable and interconnector</td>
<td>No failure</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No failure</td>
</tr>
<tr>
<td>PV module</td>
<td>Cell cracks [3%-10%]</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No failure</td>
</tr>
<tr>
<td>Mounting</td>
<td>No failure</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No failure</td>
</tr>
<tr>
<td>Other system component</td>
<td>No failure</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No detectable loss</td>
<td>No failure</td>
<td>No failure</td>
</tr>
</tbody>
</table>

Selected PV Module Failure Examples

- Cell cracks
- Discolouration of laminate
- PIDs
- Defect bypass diode
- Delamination
- Disconnected cell or string interconnect ribbon

- But also information on soiling, snow load, storm …
Database Composition

- Main survey data from Europe
- Moderate climate dominates data
- Technology distribution equal to market distribution
- 144 failure-survey-data sets from 18 countries
Analysis of Failure Occurrence

- Count only failures leading to power loss
- Cell cracks in 1-2 year, PID in 3-4 year
• Defect bypass diodes, in the first years but also later
• Discolouring all years, but accumulate after 18 years
Degradation Rates – Impact on Affected PV Modules

- Degradation rate of PV modules affected by failure x of system i:

\[
d_{i,x} = \frac{\Delta P_{i,x}}{\tau_{b,i} - \tau_{a,i}}
\]

Power of whole system:

P_i in kW$_p$

From failure x affected system part:

$z_{i,x}$ of system $i \Rightarrow d_{i,x}$
Degradation Rates – Impact on Investigated Part of PV System

- Degradation rate of the investigated system part:
 \[\delta_{i,x} = d_{i,x} \frac{z_{i,x}}{y_i} \]

- Degradation not necessarily linear

- But method allows comparing power loss for different system ages

Power of whole system:
- \(P_i \) in kW

From failure \(x \) affected system part:
- \(z_{i,x} \) of system \(i \) \(\Rightarrow \) \(d_{i,x} \)

For failure \(x \) investigated part:
- \(y_i \) of system \(i \) \(\Rightarrow \) \(\delta_{i,x} \)
All failure modes have high DR variations.
Potential induced shunts (PIDS) (mean 12%/a), PID-corrosion (13%/a) and defect bypass diode (15%/a) are most critical.
Cell cracks lead in some cases to power loss (5%/a), but not as critical as PID.
Discolouring of pottant occurs often, but with low DR (0.4%/a).
Degradation Rates for Investigated PV System Part

<table>
<thead>
<tr>
<th>Degradation Rate (δ, [%/a])</th>
<th>Quantity in database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delamination</td>
<td>10</td>
</tr>
<tr>
<td>Defect backsheet</td>
<td>5</td>
</tr>
<tr>
<td>Defect junction box</td>
<td>27</td>
</tr>
<tr>
<td>Discolouring</td>
<td>19</td>
</tr>
<tr>
<td>Cell cracks</td>
<td>8</td>
</tr>
<tr>
<td>Burn marks</td>
<td>5</td>
</tr>
<tr>
<td>Potential induced shunts PID</td>
<td>15</td>
</tr>
<tr>
<td>Potential induced corrosion</td>
<td>8</td>
</tr>
<tr>
<td>Disconnected cell or string</td>
<td>5</td>
</tr>
<tr>
<td>Defective bypass diode</td>
<td>8</td>
</tr>
<tr>
<td>Glass breakage</td>
<td>13</td>
</tr>
<tr>
<td>Isolation failure</td>
<td>2</td>
</tr>
<tr>
<td>Failure due to hail</td>
<td>4</td>
</tr>
<tr>
<td>Failure due to snow load</td>
<td>3</td>
</tr>
<tr>
<td>Animal > bite/corrosion/dirt</td>
<td>2</td>
</tr>
</tbody>
</table>

- Most DR are reduced on system level, because not all modules are affected!
- DR of PIDS (8%/a), PID-corrosion (12%/a) and defect bypass diode (10%/a) are reduced on system level
- DR of cell cracks is substantially reduced (2%/a),
- Discolouring DR does not change, mostly all modules in a system are equally affected (0.4%/a)
Degradation Rates of Failure Affected Part of PV System

- Cell crack degradation rate highest (8%/a) in continental climate.
- Mean PID 16%/a for temperate climate but high variations in rates.
- Discolouring highest in tropical climate but mean <1%/a.
LID for PERC modules not in statistic

- P-type multi crystalline PERC cells susceptible for Light and enhanced Temperature Induced Degradation (LeTID) 1.5%-15% degradation in 1-5 years (V_{mpp}), proprietär solutions\(^1\)
- P-type mono crystalline PERC cells susceptible for B-O degradation
 1% - 10% degradation multiple days (V_{mpp}), industrial solutions available

\[1\] F. Kersten et al., 31st EUPVSEC, Hamburg, Germany (2015), p. 1830
Conclusions

• Cell cracks dominate the early failures during year 1 and 2.
• Degradation rate caused by cell cracks is highest (8%/a) in continental and snow climates.
• PIDs dominates year 3 and 4 in the failure statistic (16%/a) in moderate climate.
• Great variation of degradation rates for bypass diode failure, may cause dramatic power loss.
• In all climates mean degradation rate of discolouring is below 1%/a.
• Be aware of LID degradation
Outlook

- Assessment of PV Module Failures in the Field
- Support us to collect anonymous data
 http://iea-pvps.org/index.php?id=344
- Send to: m.koentges@isfh.de
- TASK13 extension start in September 2018

Thanks for financial support:
State of Lower Saxony and BMWi under contract no. 0325786A&C and the Austrian Climate and Energy Fund under contract no. 850.414 on behalf of the Austrian Ministry for Transport, Innovation and Technology.

Thanks to Arnaud Morlier and Iris Kunze for supporting data collection.