

new energy.

Supporting Power Quality in Distribution Networks with Inverters

Andreas Schlumberger / Thomas Schaupp – KACO new energy

May 18th, 2016

- 1 Installed power today
- 2 Critical issues
- 3 Today's solutions
- 4 Solutions in standardization CENELEC TS 50549
- 5 Looking ahead

- 1 Installed power today
- 2 Critical issues
- 3 Today's solutions
- 4 Solutions in standardization CENELEC TS 50549
- 5 Looking ahead

Installed Power Today

Integration of power into the German transport grid

- In mid 2016
 - Approx. 40 GW PV power installed
 - Approx. 41 GW wind power installed
- The base load range significantly reduced

Last update: 14 Oct 2015 13:19

Installed Power Today

Installed power in Germany | Energy Charts

https://www.energy-charts.de/power_inst.htm

Datasource: Bundesnetzagentur Last update: 14 Oct 2015 13:19

Installed Power Today

Price in Germany | Energy Charts

https://www.energy-charts.de/price.htm

Datenquelle: 50 Hertz, Amprion, Tennet, TransnetBW, EEX, EPEX Last update: 06 Oct 2015 08:52

1 Installed power today

2 Critical issues

3 Today's solutions

4 Solutions in standardization CENELEC TS 50549

5 Looking ahead

Critical Issues in the distribution grid

Island formation

Overload of equipment

Voltage maintenance

Voltage maintenance

Critical Issues in the transport grid

- Balance between consumption and generation is necessary for frequency stability
- Imbalance results in frequency fluctuations
- Overload of equipment
- Sudden power drop in the GW range
 - resulting from frequency cut-off of distributed generation
 - Protective tripping in the event of short interruptions
 - System Split due to overloaded connections
 - Drop in power results in imbalance between generation and consumption

- 1 Installed power today
- 2 Critical issues
- 3 Today's solutions
- 4 Solutions in standardization CENELEC TS 50549
- 5 Looking ahead

Today's solutions

Distribution System

- Voltage Support by reactive power
- Supply management (Curtailment)
- Island detection (critical since contradicting power system stability)

Transport System

- Power reduction in case of overfrequency
- Immunity to dips and swells
- Dynamic voltage support contribution to short circuit power

- 1 Installed power today
- 2 Critical issues
- 3 Today's solutions
- 4 Solutions in standardization CENELEC TS 50549
- 5 Looking ahead

General assumption

- Standardization is required to write down state of the art
- Manufacturers require standardization to produce unified equipment for all countries
- Due to different network topology network operators have different needs to integrate dispersed generation
 - But the general problems are the same

Solution

- Define standard behavior for dispersed generation
- Allow adjustment to local needs
- Analysis of system impact is very specific to the local topology of the grid → excluded from scope

Included topics

- Range of operation (not protection)
- Immunity to disturbance
 - Voltage dips
 - Rate of change of frequency
- Reactive power provision
- Standard control modes for reactive power
- Dynamic grid support
- Protection (voltage and frequency)
- Communication

Standard range of Operation Voltage / Frequency

Immunity to Disturbance

Immunity to Disturbance

- Rate of change of Frequency
 - -2.5Hz/s \rightarrow no disconnection allowed
- For system stability it is mandatory that short disturbance does not lead to loss of generation → Immunity is important

Power Reduction in the Event of Overfrequency

- power reduction in the event of overfrequency
- Gradient 40% Pactual/Hz
- Response time as fast as possible, best below 2 seconds
- No automatic disconnection from the grid in the range of 47.5 Hz to 51.5 Hz

Reactive Power Capability

Voltage Maintenance by means of reactive power supply

Dynamic Grid Support with reactive Current

- Reactive current to feed into the grid fault (short circuit) eg. in transmission system
- Trigger line protection devices
- Increase voltage in case of remote fault
- Reduce region of impact

Dynamic Grid Support with reactive Current

Protection

Available Protection Function

Voltage

- Over/Under-voltage Phase-Phase
- Over/Under-voltage Phase-Neutral
- Over/Under-voltage Positive/Negative/Zero sequence
- Overvoltage Average values (eg. 10 min average RMS)
- Over/Under Frequency

Line protection / overcurrent is considered mandatory in installation standards and is not included in TS50549

- 1 Installed power today
- 2 Critical issues
- 3 Today's solutions
- 4 Solutions in standardization CENELEC TS 50549
- 5 Looking ahead

Looking ahead

The key question

- Which technical features will a power system need to run stable with a penetration of 40% ... 60% ... 80% ... 100% of inverter-based power generation?
- The instantaneous penetration of inverter based generation will vary during a day from 0% to 100%

Features possibly necessary in the future

- Provide power in negative sequence
- Provide primary reserve
- Provide inertia
- New protection design
- Black start capability

So ... How far can we go with inverters only?

100% inverter-based grid is possible

- Already implemented in small scale, e.g. UPS, island grids
- Research for large scale needed

So ... How can we minimize installation costs?

Reduction in material costs for inverters and modules will continue

Harmonization of requirements will reduce engineering costs

- We've let go by the chance for harmonization in context of RfG, national implementation allows to many variations
- The goal should be: Harmonization similar to Low Voltage Directive (2014/35/EU) or EMC-Directive (2014/30/EU)

Connection procedure

- a) Connection evaluation based on plant requires evaluation procedure for each plant including costs for each plant
- b) Connection evaluation based on unit allows to type evaluation and faster / more cost effective connections
- Some European countries use b) up to several MW plant size, some (GER) introduce a) above 100 kVA

Thank for your attention.

KACO new energy GmbH

Carl-Zeiss-Str. 1 . 74172 Neckarsulm . Deutschland Fon +49 7132 3818 0 . Fax +49 7132 3818 703 info@kaco-newenergy.de . www.kaco-newenergy.com