

Energy research Centre of the Netherlands

The sustainability of PV: is it quantifiable in external costs?

Carol Olson

<u>**Def'n</u>**: A cost that's not included in the market price of a good because it's not included in the supply price;</u>

The risk of external costs is transferred to the public. The price of

the consequences is paid with your tax money !

Outline: putting the spotlight on external costs

1) External costs of nuclear:

- Focus on subsidies
- 2) External costs of coal:
 - Focus on monetarizing effects of emissions
- 3) External costs of PV:
 - subsidies and emissions & land use

4) Comparison and discussion of sustainability

LCOE

The cost of electricity from different technologies is compared using the levelized cost of electricity (LCOE)

What is the Levelized Cost of Electricity?

Levelized cost (often expressed in \$/MWh or ¢/kWh) represents the present value of the total cost of building and operating a generating plant per unit electricity produced, over an assumed financial life and duty cycle.

LCOE

Levelized Cost of Electricity for PV, Coal and Nuclear

E	Estimated	Levelized Cost of New Generation Resources, 2016				
	U.S. Average Levelized Costs(2009 \$/megawatth Capacity Entering Service in 2016				our) for Plants	
Plant Type	Factor (%)	Levelized Capital Cost	Fixed O&M	Variable O&M (including fuel)	Transmission Investment	Total System Levelized Cost
Coal	85	65.3	3.9	24.3	1.2	94.8
Advanced						
Nuclear	90	90.1	11.1	11.7	1	113.9
Solar PV	25	194.6	12.1	0	4	210.7

Source: Energy Information Administration, Annual Energy Outlook 2011, December 2010, DOE/EIA-0383(2010)

LCOE Breakdown

	Plant Cha	racteristics	Plant Costs		
	Nominal				
	Capacity	Heat Rate	Overnight Capital Cost	Fixed O&M Cost	Variable O&M Cost
	(kilowatts)	(Btu/kWh)	(2010 \$/kW)	(2010\$/kW)	(2010 \$/MWh)
Single Unit	650,000	0.000	60 1 C 7	62F 07	с́и эг
Adv. Pulv. Coal	650,000	8,800	\$3,107	\$35.97	\$4.25
Dual Unit	1 200 000	0.000	62 0 <i>1 1</i>	¢20.67	Ć 4 DE
Adv. Pulv. Coal	1,300,000	8,800	ŞZ,844	\$29.67	\$4.25
Dual Unit Nuclear	2,236,000	N/A	\$5,335	\$88.75	\$2.04
Small Photovoltaic	7,000	N/A	\$6,050	\$26.04	\$0.00
Large Photovoltaic	150,000	N/A	\$4,755	\$16.70	\$0.00

Comparison of Updated Plant Costs to AEO2010 Plant Costs

	Overnigl	nt Capital Cost ((\$/kW)	Nominal Ca	pacity kW's ¹
	AEO 2011	AEO 2010	% Change	AEO 2011	AEO 2010
Adv.Pulv. Coal	\$2,844	\$2,271	25%	1,300,000	600,000
Nuclear	\$5,339	\$3,902	37%	2,236,000	1,350,000
Photovoltaic	\$4,755	\$6,303	-25%	150,000	5,000

1 Higher plant capacity reflects the assumption that plants would install multiple units per site and that savings could be gained by eliminating redundancies and combining services.

Energy Information Administration, Annual Energy Outlook 2011, December 2010, DOE/EIA-0383(2010)

LCOE for nuclear

Overnight costs: No construction time period & no interest rates on the construction

Significant cost cut for nuclear:

large capital outlays and high financing costs (15%) Construction times average 11 -12 years.

Each 10 year construction period increases capital costs 200%!

Capacity factor:

Assumed in EIAs calculations: 90 %

Actual data average: 71-79%.

1-1.5% cost cuts per 1% capacity factor improvement

→10%-28% improvement in costs!

Schrader-Frechette, Sci Eng Ethics (2011) 17:75-107 and refs therein

In addition to paying at least half of the capital costs, the public also pays for part or all of the costs for*:

- Operating the plant
- Uranium fuel

ECN

- Insurance & liability
- Plant security, proliferation
- Cooling water
- Waste disposal & plant decommissioning

EIA's LCOE does not include the public costs of nuclear power[‡].

"National Energy Modeling System generally reflects all current legislation and regulation..."

*Koplow, D., Union of Concerned Scientists report, <u>http://www.ucsusa.org/nuclear</u> <u>power/nuclear power and global warming/nuclear-power-subsidies-report.html</u> <u>+ http://www.eia.gov/forecasts/aeo/assumptions/index.cfm</u>

actual external costs

Fukushima nuclear disaster: Utility insurance can't cover the cost.

External costs: Public aid to pay massive costs of TEPCO accident

Damage on-going: Cold shut-down in 2012

Current estimates: ¥ 1-2 trillion = \$ 13 billion

calculations of external costs

Fig.9. External costs of current and advanced electricity systems, associated with emissions from the operation of power plant and with the rest of energy chain.

ECN Coal: Focus on effects of emissions

Coal, like other fossil fuels, receives many subsidies:

Environmental and Energy Study Institute, "Fossil Fuel Subsidies: A Closer Look at Tax Breaks, Special Accounting, and Societal Costs", www.eesi.org

external costs of coal

	estimates in ¢/kWh		
	Low	Best	High
LAND	0,47	0,53	0 <i>,</i> 95
HEALTH	7,7	14,09	15,48
CLIMATE	1,02	3 <i>,</i> 06	10,21
SUBSIDIES	0,16	0,16	0,27
Total	9,35	17,84	26,91

Cost of coal: 9 – 27 ¢/kWh in addition to price of generation

Omitting:

"impacts of toxic chemicals & heavy metals on ecological systems; risks & hazards of sludge, slurry and fly ash impoundments; effects of nitrogen deposition in water; impacts of acid rain and acid mine drainage; full assessment of impacts due to increasingly unstable climate"

Epstein, P. et al, Ann. N.Y. Acad. Sci. 1219 (2011) 73-98

External costs from:

Greenhouse Gas Emissions

Subsidies

Land Use

Other possible externalities

PV: greenhouse gas emissions

Emissions:

Typical greenhouse gas emissions for rooftop PV systems, using UCTE electricity mix while manufacturing[‡]

Split up emissions:*

Direct: Kerf loss, F-gas PECVD cleaning, incineration of encapsulants

Indirect: Heat & electricity

xSi module (omitting BOS): 24 g CO₂ eq/kWh (2010)

*‡*Raugei, Energy 34 (2009) 392-399;* Reich et al., Prog. Photovolt: Res. Appl. 19:603-613 (2011)

PV: land use

Land use: Example: US, high electricity bill

"Contrary to popular opinion, a world relying on PV would offer a landscape almost indistinguishable from the landscape we know today."

Area to provide all US electricity from PV

- 7% of area of cities and residences (no new land)
- < 2% of the US crop and grazing land (reallocation)</p>
- less than is currently used to produce corn for ethanol
- less land than is used for coal (including mining operations)

http://www.nrel.gov/docs/fy04osti/35097.pdf; Paul Denholm, Robert M. Margolis, Land-use requirements and the percapita solar footprint for photovoltaic generation in the United States, Energy Policy, Volume 36, Issue 9, September 2008, Pages 3531-3543, ISSN 0301-4215, DOI: 10.1016/j.enpol.2008.05.035.

ECN

2 possible ways for PV external costs to accrue

Unsustainable manufacturing practices:

e.g. Washington Post reported SiCl₄ dumping in China by the Luoyang Zhonggui High-Technology Co. (2008)

End-of-life disposal/recycling of solar modules:

e.g. Currently electronic waste is a problem.

Feed-in-tariff subsidies give a preference to renewable generated electricity in order to grow the renewable energy sector

Environmental effects:

Climate and health benefits from lower emissions

No new land needed

Economic effects:

Job creation: 164% more jobs from solar than oil*

Economic stability - Less volatile prices

Assuming sustainable manufacturing and end-of-life solutions for PV modules, there is **no risk** transferred to the public.

*Pollin, R., Political Economy Research Institute, June 2009

Yes. The sustainability of PV is evident from quantified external costs.

Low-end estimates of external costs would put the cost of nuclear and coal at least 2-3 times those stated, which are admittedly rapidly increasing for both. This shows that:

- PV is indeed more sustainable and more truly economical than the coal and nuclear options.
- No free market for electricity pricing.

However, 'lt's not over 'til it's over.'

• PV industry/community must keep an eye on sustainable processing and end-of-life solutions.

Thank you for your attention.

This work was undertaken as part of The PV Parity project, which started in June 2011 and will end in May 2014. The PV Parity project is co-financed by the European Commission in the framework of the Intelligent Energy Europe (IEE) Program.

Energy research Centre of the Netherlands

www.ecn.nl