European Technology & Innovation Platform PhotoVoltaics

ETIP PV publications

Solar Skins: An opportunity for greener cities

Solar photovoltaic (solar PV) electricity has recently become the lowest cost source of electricity in most parts of the world. Solar PV supports a socially just and acceptable energy transition and integrated applications, as well as new business opportunities. This report is focusing on one of these new business opportunities. It aims at describing the added value of Building Integrated Photovoltaics (BIPV) for a successful energy transition in European cities, as well as the related opportunities for EU businesses. It describes the regulatory and market framework needed for sustainable business models for BIPV, that are adapted to city planning constraints and specificities.

This publication is a joint report of ETIP PV and SolarPower Europe.


'Photovoltaic Solar Energy: Big and Beyond. Sustainable energy to limit global warming to 1.5 degrees' Vision and claims of the European Technology and Innovation Platform for Photovoltaics

The paper provides the evidence base to support our paper “Photovoltaic Solar Energy: Big and Beyond – vision and claims of the European Technology and Innovation Platform for Photovoltaics (ETIP PV)” released for the COP24 intergovernmental climate conference in Katowice, and now available in several languages. It also expands on the points mentioned.

The report uses the notion of defossilisation. This term builds on the more familiar “decarbonisation”, but recognises that it is not carbon atoms per se that must be prevented from reaching the atmosphere, but those carbon atoms that come from a fossil source.



PV Quality and Economy (September 2018)

The strong growth of the PV sector is accompanied by high cost pressure, accelerated innovation cycles and dynamic deployment, clearly indicating that the quality of PV products and the holistic economy of PV electricity deserve special attention. PV is expected to deliver electricity at low LCOE, Energy Pay-Back Time (EPBT) and Product Environmental Footprint (PEF). This report defines quality as the ability of a product to meet demanding customer expectations while focusing on the impact of quality parameters on monetary, energy and environmental cost.


PV manufacturing in Europe: Conference report 18-19 May 2017

ETIP PV held its annual conference on 19 May 2017 on the topic ‘PV manufacturing in Europe’. The conference was preceded on 18 May by an invitation-only meeting for associations and public officials. This report is compiled from statements made at both events. It captures the key themes that were raised and, where possible, feels its way towards conclusions.


Supporting the Development of the European PV Industry and Markets through Enhanced Quality

This report shows that the position of the European PV Industry will be strengthened by focusing on quality at all levels, resulting in new jobs and a long-term sustainable future for all interested parties, including society at large.


The true competitiveness of solar PV. A European case study

This report compares the levelised cost of PV electricity (PV LCOE) with retail electricity prices in different European countries and market segments. The report shows that PV electricity is already cheaper than retail electricity in all market segments and with all realistic interest rates in many European countries like Italy, Germany, the UK, Spain, Portugal and Greece. Even in countries with moderate solar irradiation and low retail electricity price like Finland and Sweden, PV will become competitive in 5-10 years.


Assessing the need for better forecasting and observability of PV

In its review of the challenges and opportunities associated with massive deployment of solar PV generation, the Grid integration working group of the ETIP PV identified forecasting and observability as critical technologies for the planning and operation of the power system with large PV penetration. In this white paper ETIP PV set out to spell out in more details what features are needed from these technologies and what is the state of the art.



It has been shown that the PV module price will most likely to be halved again and BoS price will decrease by more than 35% by 2030, leading to an overall PV system CAPEX reduction of about 45%. It must be noted that this development does not require any major technology breakthroughs but is a natural cause from continuing efforts in reducing materials use, impoving efficiency and developing manufacturing processes. At the same time, PV system OPEX is expected to decrease by 30%. PV LCOE will decrease by 30-50% from 2014 to 2030, depending on the volume growth and learning rate.


The European PV manufacturing Industry: analysis and policy guidance for 2020 and beyond - Edition I

This report records the statements made by a number of experts from Europe’s PV manufacturing industry interviewed between September 2014 and June 2016. It covers most sections of the manufacturing chain in Europe.